Ava King Ava King
0 Course Enrolled • 0 Course CompletedBiography
認定するAmazon MLA-C01問題無料 &合格スムーズMLA-C01日本語版復習指南 |有効的なMLA-C01最新受験攻略
MLA-C01認証試験に合格したいのは簡単ではなく、いい復習方法は必要です。我々はあなたに詳しい問題と答えがあるMLA-C01問題集を提供します。この問題集は我々の経験がある専門家たちによって開発されています。我々のすばらしいMLA-C01問題集はお客様の試験への成功を確保することができます。
数千人のAmazon専門家で構成された権威ある制作チームが、MLA-C01学習の質問を理解し、質の高い学習体験を楽しんでいます。試験概要と現在のポリシーの最近の変更に応じて、MLA-C01テストガイドの内容を随時更新します。また、MLA-C01試験の質問は、わかりにくい概念を簡素化して学習方法を最適化し、習熟度を高めるのに役立ちます。もう1つ、MLA-C01テストガイドを使用すると、試験を受ける前に20〜30時間の練習でAWS Certified Machine Learning Engineer - Associate準備時間を短縮できることは間違いありません。
試験の準備方法-ユニークなMLA-C01問題無料試験-認定するMLA-C01日本語版復習指南
JPNTestのAmazonのMLA-C01試験トレーニング資料を手に入れたら、あなたは試験に準備するからの悩みや不安を消えてしまうことができます。JPNTestのAmazonのMLA-C01試験トレーニング資料は現在、市場上で一番質のいい学習教材です。それを使って、AmazonのMLA-C01認定試験に合格する率は100パーセントになっています。JPNTestを選び、成功を選ぶのに等しいです。
Amazon MLA-C01 認定試験の出題範囲:
| トピック | 出題範囲 |
|---|---|
| トピック 1 |
|
| トピック 2 |
|
| トピック 3 |
|
| トピック 4 |
|
Amazon AWS Certified Machine Learning Engineer - Associate 認定 MLA-C01 試験問題 (Q75-Q80):
質問 # 75
An advertising company uses AWS Lake Formation to manage a data lake. The data lake contains structured data and unstructured data. The company's ML engineers are assigned to specific advertisement campaigns.
The ML engineers must interact with the data through Amazon Athena and by browsing the data directly in an Amazon S3 bucket. The ML engineers must have access to only the resources that are specific to their assigned advertisement campaigns.
Which solution will meet these requirements in the MOST operationally efficient way?
- A. Use Lake Formation to authorize AWS Glue to access the S3 bucket. Configure Lake Formation tags to map ML engineers to their campaigns.
- B. Configure S3 bucket policies to restrict access to the S3 bucket based on the ML engineers' campaigns.
- C. Store users and campaign information in an Amazon DynamoDB table. Configure DynamoDB Streams to invoke an AWS Lambda function to update S3 bucket policies.
- D. Configure IAM policies on an AWS Glue Data Catalog to restrict access to Athena based on the ML engineers' campaigns.
正解:A
解説:
AWS Lake Formation provides fine-grained access control and simplifies data governance for data lakes. By configuring Lake Formation tags to map ML engineers to their specific campaigns, you can restrict access to both structured and unstructured data in the data lake. This method is operationally efficient, as it centralizes access control management within Lake Formation and ensures consistency across Amazon Athena and S3 bucket access without requiring manual updates to policies or DynamoDB-based custom logic.
質問 # 76
A company uses Amazon SageMaker for its ML workloads. The company's ML engineer receives a 50 MB Apache Parquet data file to build a fraud detection model. The file includes several correlated columns that are not required.
What should the ML engineer do to drop the unnecessary columns in the file with the LEAST effort?
- A. Create an Apache Spark job that uses a custom processing script on Amazon EMR.
- B. Create a SageMaker processing job by calling the SageMaker Python SDK.
- C. Download the file to a local workstation. Perform one-hot encoding by using a custom Python script.
- D. Create a data flow in SageMaker Data Wrangler. Configure a transform step.
正解:D
解説:
SageMaker Data Wrangler provides a no-code/low-code interface for preparing and transforming data, including dropping unnecessary columns. By creating a data flow and configuring a transform step, the ML engineer can easily remove correlated or unneeded columns from the Parquet file with minimal effort. This approach avoids the need for custom coding or managing additional infrastructure.
質問 # 77
A company is building a deep learning model on Amazon SageMaker. The company uses a large amount of data as the training dataset. The company needs to optimize the model's hyperparameters to minimize the loss function on the validation dataset.
Which hyperparameter tuning strategy will accomplish this goal with the LEAST computation time?
- A. Bayesian optimization
- B. Grid search
- C. Hyperbaric!
- D. Random search
正解:C
解説:
Hyperband is a hyperparameter tuning strategy designed to minimize computation time by adaptively allocating resources to promising configurations and terminating underperforming ones early. It efficiently balances exploration and exploitation, making it ideal for large datasets and deep learning models where training can be computationally expensive.
質問 # 78
An ML engineer is working on an ML model to predict the prices of similarly sized homes. The model will base predictions on several features The ML engineer will use the following feature engineering techniques to estimate the prices of the homes:
* Feature splitting
* Logarithmic transformation
* One-hot encoding
* Standardized distribution
Select the correct feature engineering techniques for the following list of features. Each feature engineering technique should be selected one time or not at all (Select three.)
正解:
解説:
Explanation:
* City (name):One-hot encoding
* Type_year (type of home and year the home was built):Feature splitting
* Size of the building (square feet or square meters):Standardized distribution
* City (name): One-hot encoding
* Why?The "City" is a categorical feature (non-numeric), so one-hot encoding is used to transform it into a numeric format. This encoding creates binary columns for eachunique category (e.g., cities like "New York" or "Los Angeles"), which the model can interpret.
* Type_year (type of home and year the home was built): Feature splitting
* Why?"Type_year" combines two pieces of information into one column, which could confuse the model. Feature splitting separates this column into two distinct features: "Type of home" and
"Year built," enabling the model to process each feature independently.
* Size of the building (square feet or square meters): Standardized distribution
* Why?Size is a continuous numerical variable, and standardization (scaling the feature to have a mean of 0 and a standard deviation of 1) ensures that the model treats it fairly compared to other features, avoiding bias from differences in feature scale.
By applying these feature engineering techniques, the ML engineer can ensure that the input data is correctly formatted and optimized for the model to make accurate predictions.
質問 # 79
A company is gathering audio, video, and text data in various languages. The company needs to use a large language model (LLM) to summarize the gathered data that is in Spanish.
Which solution will meet these requirements in the LEAST amount of time?
- A. Train and deploy a model in Amazon SageMaker to convert the data into English text. Train and deploy an LLM in SageMaker to summarize the text.
- B. Use Amazon Transcribe and Amazon Translate to convert the data into English text. Use Amazon Bedrock with the Jurassic model to summarize the text.
- C. Use Amazon Comprehend and Amazon Translate to convert the data into English text. Use Amazon Bedrock with the Stable Diffusion model to summarize the text.
- D. Use Amazon Rekognition and Amazon Translate to convert the data into English text. Use Amazon Bedrock with the Anthropic Claude model to summarize the text.
正解:B
解説:
Amazon Transcribeis well-suited for converting audio data into text, including Spanish.
Amazon Translatecan efficiently translate Spanish text into English if needed.
Amazon Bedrock, with theJurassic model, is designed for tasks like text summarization and can handle large language models (LLMs) seamlessly. This combination provides a low-code, managed solution to process audio, video, and text data with minimal time and effort.
質問 # 80
......
いまAmazonのMLA-C01認定試験に関連する優れた資料を探すのに苦悩しているのですか。もうこれ以上悩む必要がないですよ。ここにはあなたが最も欲しいものがありますから。受験生の皆さんの要望に答えるように、JPNTestはMLA-C01認定試験を受験する人々のために特に効率のあがる勉強法を開発しました。受験生の皆さんはほとんど仕事しながら試験の準備をしているのですから、大変でしょう。試験に準備するときにはあまり多くの時間を無駄にすることを避けるように、JPNTestは短時間の勉強をするだけで試験に合格することができるMLA-C01問題集が用意されています。この問題集には実際の試験に出る可能性のあるすべての問題が含まれています。従って、この問題集を真面目に学ぶ限り、MLA-C01認定試験に合格するのは難しいことではありません。
MLA-C01日本語版復習指南: https://www.jpntest.com/shiken/MLA-C01-mondaishu
- MLA-C01ダウンロード 🥜 MLA-C01復習問題集 🚉 MLA-C01資格関連題 🚗 { www.topexam.jp }には無料の⇛ MLA-C01 ⇚問題集がありますMLA-C01日本語復習赤本
- MLA-C01試験の準備方法|最新のMLA-C01問題無料試験|最高のAWS Certified Machine Learning Engineer - Associate日本語版復習指南 ⬅ ➠ www.goshiken.com 🠰を入力して➡ MLA-C01 ️⬅️を検索し、無料でダウンロードしてくださいMLA-C01入門知識
- MLA-C01絶対合格 📞 MLA-C01ダウンロード 📡 MLA-C01資格講座 🎎 [ MLA-C01 ]を無料でダウンロード⮆ www.japancert.com ⮄ウェブサイトを入力するだけMLA-C01一発合格
- MLA-C01一発合格 🏢 MLA-C01認定資格試験問題集 🥭 MLA-C01受験対策書 👽 【 www.goshiken.com 】で使える無料オンライン版☀ MLA-C01 ️☀️ の試験問題MLA-C01参考資料
- MLA-C01受験トレーリング 🎐 MLA-C01サンプル問題集 🌲 MLA-C01参考資料 🥳 【 www.passtest.jp 】を開き、【 MLA-C01 】を入力して、無料でダウンロードしてくださいMLA-C01練習問題集
- MLA-C01復習問題集 😱 MLA-C01資格講座 💹 MLA-C01練習問題集 🔤 【 www.goshiken.com 】にて限定無料の➠ MLA-C01 🠰問題集をダウンロードせよMLA-C01資格関連題
- MLA-C01練習問題集 🦅 MLA-C01一発合格 🔔 MLA-C01独学書籍 🧢 《 MLA-C01 》の試験問題は“ www.pass4test.jp ”で無料配信中MLA-C01ミシュレーション問題
- コンプリートMLA-C01問題無料 - 保証するAmazon MLA-C01 高品質の試験の成功MLA-C01日本語版復習指南 ⛷ 時間限定無料で使える✔ MLA-C01 ️✔️の試験問題は▷ www.goshiken.com ◁サイトで検索MLA-C01受験トレーリング
- MLA-C01一発合格 🦝 MLA-C01受験トレーリング ♻ MLA-C01認定資格試験問題集 🕖 ウェブサイト“ www.pass4test.jp ”を開き、{ MLA-C01 }を検索して無料でダウンロードしてくださいMLA-C01一発合格
- MLA-C01試験の準備方法|最新のMLA-C01問題無料試験|最高のAWS Certified Machine Learning Engineer - Associate日本語版復習指南 🐔 ➽ www.goshiken.com 🢪に移動し、➤ MLA-C01 ⮘を検索して無料でダウンロードしてくださいMLA-C01参考資料
- MLA-C01ミシュレーション問題 🏂 MLA-C01絶対合格 🦽 MLA-C01日本語版問題集 🔂 “ MLA-C01 ”を無料でダウンロード{ www.pass4test.jp }ウェブサイトを入力するだけMLA-C01絶対合格
- MLA-C01 Exam Questions
